
Chapter 9 

Time and Variability Indicators,  
 Classical Immunization       

9.1. Main time indicators 

Knowledge about the indicators of the time structure in the operation  

 O  =  {th}&{Sh} (9.1) 

consisting of receipt (or payment) of amounts S1,...,Sn to times t1,...,tn is important in 
the management of securities. Thus we preserve the assumption of the same sign 
into {Sh} which are not all zero.1 Therefore, O results are not fair  (see Chapter 4).  

Concerning the particular case of a bond, the amounts {Sh} are the receipts owed 
to its owner, both as interest by coupon and as principal by refunds. The payment for 
the bond purchase is not considered; thus O is a generalized annuity, because the 
payment schedules can be not periodic.  

We will now give a description of time indicators useful in financial 
management. They are in the time dimension, so are measured in the unit chosen in 
the tickler (usually a year). In addition, they are invariant under proportional 

                                                 
1 As we will see immediately, the time indicators represent “mean times” because they are  
means of the interval length between the reference instant (in particular, the purchase or 
evaluation instant) and the maturity of each receipt. Therefore, these time indicators have the 
feature of “internal means”, i.e. are intermediate numbers between the lowest and the highest 
length of such intervals. 
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variations of Sh. Then if O is an annuity with constant payments, the indicators for O 
can be estimated on the corresponding unitary annuity.  

9.1.1. Maturity and time to maturity 

Maturity and time to maturity are the simplest time indicators of O. Using the 
previous symbols and denoting by t the reference instant (e.g. the purchase or 
valuation date) the maturity of O is tn, and its time to maturity is tn-t. It is evident 
that this is an indicator on complete information about the structure of time only on 
zero-coupon bonds, because it neglects the coupon distribution. 

With regard to the following indicators, using (7.25), for the sake of simplicity 
we put at t=0 the reference instant, assuming th 0, h, and at least one th>0; thus the 
time horizon of O is subsequent to 0. Therefore, if t=0 is the purchase or valuation 
instant of a bond m time units after the issue, this instant is -m and only the 
payments subsequent to the reference instant are considered. With such an input, the 
maturity and the time to maturity coincide. It is evident with any t that it is sufficient 
to use (th-t) instead th in what follows. 

9.1.2. Arithmetic mean maturity  

This is defined as the arithmetic mean of the maturities th, weighted by the 
amounts Sh of O defined in (9.1), then calculable by the formula  

 t h t hSh 1
n

hSh 1
n

 (9.2) 

The meaning of   t  in terms of mechanics is evident, as the center of mass about 
the system of Sh  put in the points th of time axis. Obviously in (9.2) we can assume, 
instead of Sh, the standardized weights Sh / Skk 1

n  , that represent the cash-inflow 
shares at th. Then   t is a synthetic indicator of the cash-flow timing.  

9.1.3. Average maturity 

We define average maturity z as the solution of the following equation, referred 
to (9.1): 

 1 1(1 ) (1 ) hn n tz
h hh hi S S i  (9.3) 
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depending on a given flat-rate i. From (9.3) we deduce the explicit form: 

 z
ln Sh (1 x) th / Shhh

ln(1 x)
 (9.3') 

z is an exponential mean of th, obtained with the transformation of an arithmetic 
mean by the monotonic function f(x)=(1+ i)-x. Therefore, it is associative and (9.3) 
gives i its only solution z =z(i). As f(x) is a discount factor, the average maturity is 
the time, that, concentrating all payments in this time, we obtain the same present 
value obtainable according to the given tickler {th). 

More generally, if we consider a financial discount law related to the structure of 
spot prices  v(0,t), the average maturity z, depending on v(0,t), is the solution of 

   v(0,z) Shh 1
n

  =   Shh=1
n

 v(0,th )  (9.3'') 

The average maturity enables a thorough analysis of the feature and the return of 
a financial plan made by an operation O* with amounts of any sign. Sharing the n 
supplies of O* according to the amount sign, we obtain the outlays (usually called 
the costs of the plan) and the receipts (also called the revenues). Then, for every 
fixed h, 

 if Sh < 0, we use Ch = |Sh Sh > 0  (cost) and th  = t'r ; 

 if Sh > 0, we use Rh = Sh > 0  (revenue) and th  = t"s . 

Then we obtain the sub-operations O*' of the n' costs and O*" of the n" revenues 
of O* (being  n'+n" = n) in their respective maturities. The value of O* is the sum of 
the O*' and O*" values. Then, using C = r Cr , R = s Rs, and denoting  with zC 
and zR the mean maturities of  O*' and O*", and selecting a uniform discount law 
v(t) (depending only on time t), the O* value, using the new symbols, is  

V0   Cr v(t 'rr 1
n' ) +  Rs s 1

n" v(t"s ) =   C v(zC ) +  R v(zR )  

Therefore, with the purpose of the valuation, the O* plan is equivalent to the 
point input, point output (PIPO) plan {zC ,zR}&{-C,R} obtained by concentrating all 
costs in zC  and all revenues in zR . Using  = zR -zC , if  zC < zR  so >0, the plan O* 
has the investment feature, since the costs on average occur before the revenues; but 
if  zC >zR  i.e. <0, instead, the costs on average occur after the revenues, then the 
plan O*  has the loan feature.  

In the case of zC < zR  if we select v(t) subject to strong decomposability, which 
implies symmetry, then the accumulation factor from  zC  to zR is v(zC )/v(zR). 
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However, in this case, as known, the exchange law is exponential: v(t) = (1+i)-t , 
where i  is the interest rate. Then we obtain:  

  V0 =  C (1+i)-zC  +  R (1+i)-zR
 

where zC , zR and  depend on i.  If i=i*= IRR of O*, we obtain:      

 V0 (i*)  (1+i*)-zR [-C(1+i*) +R] 0,   so :  C(1+i*) = R   

This formula clarifies, with reference to the PIPO plan equivalent to O*,  the 
meaning of the internal rate of return IRR and of the average time length . 

9.1.4. Mean financial time length or “duration”  

Given a term structure, defined by spot prices v(0,th) in the valuation time 0 and 
an operation O set as (9.1), we define duration, denoted by D (see Macaulay, 1938) 
in a reference time put in 0, the arithmetic mean of times th weighted by the present 
values Sh

.v(0,th) of amounts Sh, that is by the prices at 0 of the zero coupon bonds 
(ZCB) that enable the buyer of the bonds to receive Sh at the times th, (h=1,...,n). 
Then the duration is univocally obtained by  

 

    

D =   
thh 1

n
Shv(0, th )

Shv(0, th )
h 1
n

   (9.4) 

If the tickler has integer times th = h, then in (9.4) the unit price v(0,h) can be 
expressed according to the implicit forward annual rates by (7.30'). 

Definition (9.4) shows that the duration is a mean of the times on the basis of the 
economic scenario valued in the reference instant. The hth weight Sh

.v(0,th) of the 
mean is the share of present value, or price, at 0 due to supply (th,Sh). It is also 
evident that D as the meaning of the first moment. Thus, it is the abscissa of the 
center of mass regarding the system {Shv(0,th)}  of mass put on the time axis in the 
abscissas th.  

If we assume, in order to obtain valuations, that the flat-yield structure will 
always be at level i, the duration, in this case named flat yield curve duration (FYC 
duration), depending on i or  = ln(1+i), becomes: 

 

    

D  =   
thSh (1 i) th

h=1

n

Sh (1 i) th
h=1

n
  =   

thSh e  th
h=1

n

Sh e  th
h=1

n
 (9.5) 
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It is easy to prove the following theorem: 

Theorem: For any operation O having an annuity  feature, i >0  

 D    z     t  (9.6) 

results, holding the equalities only if O has only one amount at maturity tn. The 

inequalities are reversed if i<02 .  

Example 9.1  

Let us consider the operation O given by the cash-inflows Sh: {10450, 12500, 
8820, 56600} in the times: {1, 2.5, 3.75, 5 }, which are valued using the annual flat-
rate i = 4.75%. 

Recalling formulae (9.2), (9.3), (9.5), O has the time parameters  t , z , D, defined 
above. We obtain 

1) 
10, 450 12,500 2.5 8,820 3.75 56,600 5 357, 775

4,049
10,450 12,500 8,820 56,600 88,370

t ; 

                                                 
2 This theorem, formulated by E. Levi (1964), is proved here in the case of flat-yield structure 
taking into account known inequalities among means. Proof: with only one cash-inflow in tn , 
(9.6) is trivial when it gives equalities. With many cash-inflows we firstly prove the strong 
inequality between   t  and z. Put: v = 1/(1+i), we obtain  

hh h h

1/
t / tt

h
v  = v  = v

hhhh h

SSS S   

Therefore, v t  is the geometric mean of the discount factors v th  with weights Sh , then it is 

smaller than their arithmetic mean with the same weights, which by (9.3) equals vz . Owing to 

v t < vz , we obtain  z< t  if i>0 (that is v<1); on the contrary we obtain z> t  if i<0 (that is v>1). 
Moreover we prove the strong inequality between z and D: using u=1+i, we obtain  

D
u  =  ht hS thv / hS thvhhu  =  ht(u ) hS thv

h

1/ hS thv

 

Therefore, u D  is the geometric mean of the accumulation factors u th  with weights Sh , then 

less than their arithmetic mean with the same weights, which equals uz , considering the 

reciprocal in (9.3). Owing to  uD < u z , we obtain  D<z if  i>0 (that is u>1); on the contrary 
we obtain  D>z  if i<0  (that is u<1). Finally, by the transitivity of  “<” and “>”, D> t  follows 
if i>0,  D< t  follows if i<0      .  
We can deduce these relations between D and t  observing that if i>0 the discounting of Sh , 
made on D and not on t , cause a reduction which is greater for the amounts Sh  payable at  
times nearer to the last maturity, so the weighted arithmetic mean decreases. The opposite 
conclusion results if i<0; in this case we obtain a greater reduction for the payments closer to 
0. 



368     Mathematical Finance 

   
2) z  is given by: 

   88,370.1.0475 -z  = 10,450.1.0475 -1 + 12,500.1.0475 -2.5 +  

 + 8,820.1.0475 -3.75  + 56,600.1.0475 -5 

  that is:   1.0475 -z  =  73397.46 / 88370  = 0.830570 

 log  0.830570
4,000 

log  1.0475
z  

3) the FYC duration D is given by 

 

1 2.5 3.75 5

1 2.5 3.75 5
10,450 1.0475 2.5 125,00 1.0475 3.75 8,820 1.0475 5 56,600 1.0475

10,450 1.0475 12,500 1.0475 8,820 1.0475 56,600 1.0475
D  

 

   
289, 991.80

73, 397.46
 3.951  

We can verify: t Z D , according to i > 0. 

Exercise  9.1 

With the same cash-inflows virtue as in Example 9.1, let us consider a spot-

prices structure 
v 0,z

30
z 30   and calculate z and D. 

A. We obtain:  v(0,1) = 0.967742    ;  v(0,2.5) = 0.923077; 
    v(0,3.75) = 0.888889;  v(0,5)    = 0.857143 

By virtue of (9.3), z is solution to 

30

z 30

10, 450 0.967742 12, 500 0.923077 8, 820 0.888889 56, 600 0.857143

10, 450 12, 500 8, 820 56, 600

  
78, 005.66

88, 370
  0.882717  ;  then   z = 3.986 

By virtue of (9.4), D is given by  

 

10,450 0.967742 2.5 12,500 0.923077 3.75 8,820 0.888889 5 56,600 0.857143
10,450 0.967742 12,500 0.923077 8,820 0.888889 56,600 0.857143D  

 
 

310, 930.53

78, 005.66
 3.986  

The denominator is the value in 0 of this inflow operation.   
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For the duration D the following property is valid, and is very useful in the 
subsequent applications: 

Let us consider two investments at 0 in order to obtain the operations O1 and O2 
made up respectively of cash-inflows {ah} at the maturities { t'h } and {bk} at { t"k }. 

Let us also denote by A =     ahh
v(0,t'h ) and B = 

  
bkk

v(0, t"k )  the values at 0 of 

O1 and O2, according to the spot prices structure v(0,t), or the corresponding rates 
i(0,t). Then the duration Da+b  of the operation O1 O2, which includes together the 
cash-inflows of O1 and O2 in the respective maturities, is the arithmetic mean of the 

duration Da  of O1 and Db of O2 , weighted by the values A and B3 . 

Then the following mixing property holds: 

Suppose that it is possible to vary continuously and in a proportional way the 
amounts {ah} and {bk} of two investments which give rise to the operations O1 and 
O2, so that the values A and B change, but not the durations of O1 and O2. Under 
this assumption we can continuously vary the shares A/(A+B) and B/(A+B) of two 
investments so as to obtain a duration of O1 O2 however chosen in the interval 
between the durations of O1 and O2.  

The classical case concerns the assignment of the total amount A+B to buy two 
kinds of securities. A and B are changed as written with A+B  = const., so as to 
obtain the desired duration Da+b. This property can be extended to more than two 
operations.  

In the applications the calculation of the FYC duration is useful for basic 
operations which are components of a complex portfolio management, when we 
assume a flat-yield structure and therefore a FYC duration. We use this calculation 
for the following operations. 

O = temporary annuity-immediate with constant payments   

In order to calculate the FYC duration, because of its invariance with respect to 
proportional variations of amounts, it is not restrictive to consider O as unit annuity. 
Moreover we assume unit periods and annually delayed payments. By virtue of (9.5) 
and the symbols in Chapter 5, we obtain 

                                                 
3 The proof follows the associative feature of the arithmetic mean. Analytically, concerning 
the duration of O1  O2  we  can be written:  

Da+b  =  
t'h ahv(0,t'h ) t"k bkv(0,t"k )

kh

A  B
 = Da A

A B
 + Db B

A B
 .      
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n|i1

n|i1

(I )(1 )

(1 )

n h
h
n h
h

ah i
D

ai
 (9.7) 

where the denominator is the present value an |i = v
1 vn

1 v
 of the annuity and the 

numerator is the present value (Ia)n |i = v

1 v
[
1 vn

1 v
nvn ] of the increasing 

annuity.4 We easily obtain the expression of D  by i: 

  

  
D =  

1+i

i
 -  

n

(1 i)n 1
 (9.7') 

It is easy to verify that the duration given by (9.7') is a decreasing function of the 
annuity valuation’s rate. Moreover, the value n/[(1+i)n-1] vanishes with diverging n 
and then the curve D(n) is strictly increasing5 and bounded by the asymptote i/(1+i) 
= 1/d. This level then gives the FYC duration of a perpetuity. 

Example 9.2 

Let us consider a semiannual annuity-immediate over 6 years, using the rate of 
6.20%. With regard to the duration’s calculation, it is equivalent to assume unit 
payments. Taking the half-year as the unit, we use (9.7') and n=12 half-years and i = 
0.030534 (= six-month equivalent rate). The result is 

D 
1.030534
0.030534

  
12

1.030534 12 1
  6.142  

i.e., FYC duration = 3.071 years = 3y+0m+26d. 

O =  cash-inflows by zero-coupon bonds (ZCB) 

Since the duration is a mean of the cash-inflows times and the ZCB gives only 
one encashment at maturity n, D=n results. This number is the greatest value 
obtainable with respect to the durations of bonds with cash-inflows of any amount 
and period before maturity. 

 

                                                 
4 See. formulae (5.2) and (5.26) of Chapter 5.  
5 To prove the increase of D with n, it is enough to verify that the subtrahend in (9.7') 
decreases. Indeed, since (1+i)-x>1-xln(1+i) (= its linear approximation), x>0, results, the 

derivative of  y = x/[(1+i)-x - 1] here is negative. 
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The bonds have a redemption value C and coupon I for the unit period. Then 

 th = h, (h=1,...,n) ; Sh = I  (if h=1,...,n-1), Sh = C+I  (if h=n)  (9.8) 

results, and the FYC duration is obtained  taking into account the effect of (9.8) on 
(9.5). Then we obtain 

 
n|i

n|i

(I )  (1 )

 (1 )

n

n

I a n C i
D

I a C i
 (9.9) 

Equation (9.9) can be meaningfully obtained by the mixing property, pointing 
out that the operation here considered is the union of O' (= cash-inflows of coupons) 
and O" (= cash-inflow of redemption principal). The value in 0 of O' is A=I. an |i ; 
that of O" is B=C(1+i)-n; the FYC durations are respectively (Ia)n |i/ an |i and n. 
Calculating their arithmetic mean with weights A and B we obtains (9.9), which is a 
function decreasing with respect to both the coupon rate I/C and the yield rate i.  

 In Figure 9.1 the curve of D, as a function of the time, tends to the asymptote 

(1+i)/i. It is strictly increasing only if I/C  i (purchase at par or above par); 

otherwise (purchase below par) it increases up to local maximum     ̂D  > (1+i)/i and 

then decreases towards the asymptote. However, it is to say that with the customary 

rates we obtain the local maximum point after a long time, then  in the numerical 

interval of the usual maturities the duration D, as a function of the time t, increases. 

 
 

 
Figure 9.1. Plot of D, function of the time t 
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Example 9.3  

Let us consider at t=0 a bond with redemption value 100 in t=5 and annual 
coupons whose amount is 6.50 payable in 1, 2, 3, 4 and 5. Let us assume the 
valuation rate = 7%.  

The duration’s calculation proceeds as follows: 

 v = 1.07-1  = 0.934579 ; n=5 ; C = 100 ; I = 6.50 

 (Ia)n |i  = 0.934579
0.065421

 
0.287014
0.065421

3.564931   11.746862   

 an |i = 0.287014
0.07

  4.100197  

hence by virtue of (9.9) 

 
  
D  

6.50 11.746862 5 100 1.07 5

6.50 4.100197 100 1.07 5
  4.419 =  4y + 5m + 8d 

O =  cash-inflows by bond portfolio  

The previous calculation for the duration can be extended to the vectorial case, 
i.e. to a portfolio of m types of bonds whose purchase transfers the rights on m 
encashment operations, that we assume on the same tickler, e.g. on n years. These 
cash-inflows in such a tickler can be collected in a matrix  S = {Skh}. Therefore, O = 
O1 ... Om  where at any operation 

Ok = {Sk1,...,Skn}&{t1,...,tn}, k=1,...,m, 

which concerns a unit of the kth  bond, we join the initial value (or purchase price at 
0)   

 1 (1 ) ;   ( 1,..., )htn
k khhP S i k m  (9.10) 

Let us now consider a portfolio obtained by k units of the kth bond. It is evident 
the cash-inflows due to the given portfolio set up the operation O = 

1O1 ... mOm. Then the value (or price) P of O at 0 is the linear combination of 
the values (or prices) Pk of Ok with weights k . In addition, at 0 the FYC duration D 
of O is the arithmetic mean of Dk, FYC durations of Ok , weighted by the values 

kPk at 0 of the kth bond’s shares in the portfolio6. Such conclusions remain valid if, 

                                                 
6 Then it is possible to extend the mixing property for m>2 bonds. For the proof it is sufficient 
to use the linear algebra. Indeed, the cash-inflows of O in th are Ph = k k

Skh . Then    

1) using (9.10) it follows A = Phh 1
n (1 i) th = kk 1

m
Skhh 1

n (1 i) th = kk 1
m

Ak  
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instead of a flat-yield curve, we use any discount law (or unit prices structure) v(0, 
t). 

Example 9.4 

Let us consider three kinds of bonds, and use 100 as the unit redemption value 
and 5.50% as valuation flat-rate: 

 1st  bond: with constant coupon; maturity 4 years; annual coupon 5; 

 2nd bond: with zero-coupon; maturity 2 years; 

 3rd bond: with variable coupon; maturity 3 years; annual coupons with 
amounts: 5.40; 5.80; 5.60. 

Denoting by k the quantities of the bonds in the portfolio, let us consider two  
portfolio mix assumptions: 
assumption )  1 = 25;  2 =  3;  3 = 10; 

assumption )  1 = 2;  2 = 28;  3 =  8. 

Then, assuming a unit times tickler, the cash-inflows tickler per bond unit and 
the possible mixing are the following: 

 th = 1 2 3 4   

1st  bond 5 5 5 105 25 2 

2nd bond 0 100 0 0 3 28 

3rd bond 5.4 5.8 105.6 0 10 8 
Total 38 38 

We could calculate the FYC duration portfolio by working on the total cash-
flows, that in the two given hypotheses are written here below. 

 th =    1 2 3 4 

 179.0  483.0 1,181.0 2,625.0 
              53.2           2,856.4              854.8               210.0 

We obtain 

D   
12530.61630
3728.320452

  3.36093 
       

D   
8045.04565
3514.24090

  2.28927 
 

                                                                                                                   

2) using (9.4') and (9.10),  
  
Dk =  

thSkh
th(1 i)h

Ak
  ;   D =  

th Ph
ht(1 i)h

A
 =    

= 
th k k

Skh
th(1 i)h

A
 =  k

Ak

A

th h
Skh

th(1 i)
Ak

k  =  
kAkDkk

kAkk

   � 
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However, it is important to calculate the bond unit duration and make the linear 
combination for each mixing assumption. Denoting by Ds the FYC duration of the 
sth bond, we easily obtain: 

D1  
365.52882
98.24742

  3.72049    ;
   

D2  
179.6904
89.8452

  2
  

  
D3  

285.33174

100.25991
  2.84592 

 
where in the denominators the values Pk of unit bonds appear. Since the portfolio 
duration is the arithmetic mean of unit bond durations weighted by the total values 
of each bond in the portfolio, we obtain 

 D
25 98.247424 3.720493 3 89.8452 2 10 100.259910 2.845921

25 98.247424 3 89.8452 10 100.259910
   

 
  

 
12530.61036

3728.32030
  3.36093   

 D   
2 98.247424 3.720493 28 89.8452 2 8 100.259910 2.845921

2 98.247424 28 89.8452 8 100.259910
 

  
8045.04317
3514.23973

  2.28927  

i.e. we obtain the previous results. At the denominator of D  and D  we have the 
values of the two portfolios  and , i.e. 

      P kk Pk 3728.32    ;       P kk Ak 3514.24  

9.2. Variability and dispersion indicators 

9.2.1. 2nd order duration  

In the portfolio management it is useful to take into account the dispersion. To 
satisfy this need, we define the 2nd order duration at 0 

 

      

D(2) =   
th
2

h 1
n

Shv(0, th )

Shv(0, th )
h 1
n

    (9.11) 

which has the dimension of  (time2) and depends on the term structure of spot prices 
v(0,th). Equation (9.11) shows that 

  
D(2) is the second moment of the mass system 

whose D is the first moment. 
    
D(2)  (tn)2 always results.  
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In particular, in the case of a flat-yield structure the 2nd order FYC duration takes 
the form of 

 

      

 D(2)  =  
t
h
2

h 1
n

She th

She th
h 1
n

 =
t
h
2

h 1
n

Sh (1 i ) th

Sh (1 i ) th
h 1
n

     (9.11')7 

In addition, it is suitable to look over the consequences of interest rate 
variability, particularly in the case of investment rate of return (see the 
immunization theory in section 9.3). By working under a flat-rate, it is known that 
initial value V(i) of a cash-inflow set due to an investment (or the price which allows 
a rate of return i) is a function that decreases and is a downward concave of i.  

The reference to initial value (or price) V( ) and to its derivatives depending on 
intensity =ln(1+i) simplifies the following formulae. We obtain 

V ( ) She  th
h 1
n

; V ' ( ) thh 1
n

She  th ; V"( ) th
2

h 1
n

She  th  (9.12) 

resulting in:  V( ) > 0; V'( ) < 0; V"( ) > 0. 8  

Example 9.5 

Let us again use the cash-flow given in Exercise 9.1, i.e. the cash-inflows 
{10,450; 12,500; 8,820; 56,600} over the tickler {1; 2.5; 3; 3.75; 5}, valued by the 
law v(0,z)=30/(z+30). We have seen that the value at 0 of the given cash-flow is 
78,005.66 and its duration is 3.986 years. 

Using some results of that exercise, we verify that the 2nd order FYC duration by 
virtue of  (9.11') is given by 

 D(2) 10,450 0.967742 2.52 12,500 0.923077 3.752 8820 0.888889 52 56,600 0.857143
10,450 0.967742 12,500 0.923077 8,820 0.888889 56,600 0.857143  

                                                 
7 From a physical point of view, also with a flat-yield structure the duration D, given in this 
case by (9.5), is the first moment, thus the center of mass, of the distribution of the 

mass Sh e  th  put in th , whereas D(2) given by (9.11') is the second moment, that is the 

moment of inertia in a rotation around the origin. Moreover 2 = D(2) -D2 is the variance, i.e. 
the central second moment (or central moment of inertia), which is a dispersion indicator. In 
a more general approach with any term structure, the mass Shv(0,t) are taken, D is given by 

(9.4) and D(2) is given by (9.11) being valid analogous conclusions. 
8 It is well known that the sign of second derivative measures, if this sign is positive, the 
punctual degree of upward concavity (or downward convexity) of a f(x) and, if this sign is 
negative, that of downward concavity (or upward convexity). The concavity and the 
convexity imply “downward”. 
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1, 405, 335.65

78,005.66
18.0158 years2  

9.2.2. Relative variation      

Let us carry out a survey of variability indicators under the flat-yield structure. 
With reference to the function V( ) and its first derivative (see (9.12)), we can define  
an index of relative variation by 

  
 

V ' ( )
V ( )

d

d
ln V ( ) 0 (9.13)

Recalling (9.5), which gives the FYC duration D, the basic formula  

 V'( )/V( )  =  - D (9.13') 

that identifies in absolute value the quickness of relative variation of V with respect 
to ,  with the FYC duration, holds.9    

Note 

Among the consequences of rate fluctuations there is also that of the same 
duration change, which in previous approximations is neglected. Under a flat-yield 
structure the quickness and the direction of such a variation are measured by the 
derivative of D. Using (9.12) this results in: 

D
 =  h

th S e  th
h 1
n

She  th
h 1
n

 =  
th
2She  th .V ( ) (

h
th S e  th )2

h 1
n

h 1
n

V 2 ( )
 =

  

[D(2) D2 ] = - 2 < 0         (9.14) 

Therefore D  is a meaningful volatility indicator of times with respect to 
mean time D. By virtue of (9.14) it follows that D decreases when intensity or rate 
increases. We obtain the following equation 

 D

i
 =  

D d

di
 =  - v 2 < 0 (9.14') 

                                                 
9 A type of duality holds between duration and interest instantaneous intensity: intensity 
(=time-1) is the derivative of value’s logarithm (pure number because it is an exponent) with 
respect to time; duration (=time) is the derivative of value’s logarithm (pure number because 
it is an exponent) with respect to intensity (time-1). 
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To conclude: distribution variance  quickness of D(  variation  quickness 
of D(i) variation. 

9.2.3. Elasticity 

In the flat-yield structure assumption, we define elasticity of a bond value (or 
price) at 0 with respect to 10 the limit ratio on vanishing  between the relative 
variations V/V and / . The result is 

=  
0

lim  V /V
/

  
V ( )
V ( )

   - D  (9.15) 

Denoting by i the elasticity with respect to i = e the result is:

i =  
i 0
lim  V /V

i / i
  i

V (i)
V (i)

   -
i

1 i
D  (9.15') 

9.2.4. Convexity and volatility convexity 

Under the flat-yield structure assumption, let us introduce two further indicators 
linked to second derivative (>0) of value (or price) V. The former indicator, called 
convexity, is the level of convexity per unit of value. The convexity can be expressed 
as a function of the intensity , called -convexity and denoted by , as well as by a 
function of rate i, called i-convexity and denoted by 

i
. Due to (9.11'), the -

convexity coincides with the 2nd order FYC duration. Using symbols, the two 
indicators valued at 0 are:

  

th
2 Sh  e  th

h 1
n

Sh e  th
h 1
n

 =  D(2) V"( )
V ( )

 (9.16) 

 
i

th  (th 1) Sh (1 i) th
h 1
n

Sh (1 i) th
h 1
n

V"(i)
V (i)

(1 i)2  (9.16') 

                                                 
10 In general, given two variables x, y functionally linked by y=f(x) (continuous and 
derivable), we define elasticity of y with respect to x , here denoted by , the punctual relative 
increment of y with respect to x, that is the limit ratio between their relative variations. Using 
symbols

 

x 0
lim

f (x x) f (x) / f (x)

x / x

x

f (x)
 

x 0
lim

f (x x) f (x)
x

x
f (x)

f (x)

d ln f (x)

d(ln x)  
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The latter indicator, called volatility-convexity, means the convexity per unit of 
value variation. The volatility-convexity can be expressed according to the intensity 
, called  -volatility-convexity and denoted by * , or dependent on rate i, called  i-

volatility-convexity and denoted by i
*. Using symbols:  

 

  

* -
th

2She  th
h 1
n

thShe  th
h 1
n

 =  -
D(2)

D

V"( )
V ' ( )

  (9.17) 

 

 

 i
* -

th (th 1)Sh (1 i) th
h 1
n

thSh (1 i) th
h 1
n

= * 1
V"(i)
V '(i)

(1+i)  (9.17) 

Comparing (9.5) with (9.16) and (9.16') we obtain the important simple formula: 

i D , which enables us to easily calculate one of the quantities having been 

given the others. In addition, such indicators are applied in the theory of classical 

immunization, which we address in section 9.3. 

Exercise 9.2 

Given the inflows operation J with amounts [8,520; 11,400; 6,450; 61,800] and 
tickler [0.5; 2; 3.5; 5.25], due to a previous investment with amount calculable by 
(5.23), let us calculate the duration, the convexity and the volatility-convexity at 0, 
with respect to  and i, valuing by i = 4.75% or by the corresponding . 

A. Using an Excel spreadsheet, we draw up the following table which gives the 
asked solutions by working on the data of J. The constraints among i-convexity, -
convexity and FYC duration are verified. 
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        CALCULUS OF  DURATION, CONVEXITY AND VOLATILITY-CONVEXITY 

      

          Depending on   = 0.046406  

th Sh vh=exp(- th) Shvh thShvh th2Shvh 

0.50 8,520 0.977064 8,324.58 4,162.29 2,081.15 

2.00 11,400 0.911364 10,389.55 20,779.10 41,558.20 

3.50 6,450 0.850082 5,483.03 19,190.60 67,167.11 

5.25 61,800 0.783775 48,437.29 254,295.76 1,335,052.72 

  72,634.45 298,427.76 1,445,859.19 

     

 V = 72634.45  D = 4.1086 

  = 19.9060   = -4.8449 

     
            

  Depending on  i: i = e -1 = 0.047500  

th Sh vh = (1+i)-t
h Shvh thShvh th(th+1)Shvh 

0.50 8,520 0.977064 8,324.58 4,162.29 6243.44 

2.00 11,400 0.911364 10,389.55 20,779.10 62337.31 

3.50 6,450 0.850082 5,483.03 19,190.60 86357.72 

5.25 61,800 0.783775 48,437.29 298,427.76 1589348.48 

   72,634.45 298,427.76 1,744,286.94 

      

 V = 72634.45  D  = 4.1086 

 i = 24.0146  *I = -5.8449 
      

  The constraint  i =  + D is verified 

Table 9.1. Example of calculus of duration, convexity and volatility-convexity 

The Excel instructions are the following. With regard to non-empty cells, we 
have:   
E14: input of annual rate; E3:= ln(1+E4). 
 Depending on : 
   from row 5 to 8:  
column A:  maturity: input from A5 to A8; 
column B:  flow: input from B5 to B8; 
column C: unit spot price: C5:= EXP(-$E$3*A5); copy C5, then paste on C6 to C8 
column D: present value: D5:= B5*C5); copy D5, then paste on D6 to D8; 
column E:  present value . maturity: E5:= A5*D5); copy E5, then paste on E6 to E8; 
column F: present value . maturity2: F5:= A5*E5); copy F5, then paste on F6 to F8; 
  row 9:  sums: D9:= SUM(D5:D8); copy D9, then paste on E9 to F9; 
  row 11:  value, duration:   C11:= D9 ;  F11:= E9/D9; 
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  row 12:  -convexity, -volatility-convexity: C12:= F9/D9 ;  F12:= -F9/E9; 
   Depending on  i: 
   from row 16 to 19:  
column A:  maturity: copy from A5 to A8, then paste on A16 to A19; 
column B:  flow: copy from B5 to B8, then paste on B16 to B19; 
column C:  unit spot price: C16:= (1+E$14)^-A16; copy C16, then paste on C17 to 

C19; 
column D:  present value: D16:= B16*C16); copy D16, then paste on D17 to D19; 
column E:  present value . maturity: E16:= A16*D16); copy E16, then paste on E17 

to E19; 
column F: present values . maturity . (maturity+1): F16:= E16*(A16+1);  
 copyF16, then paste on F17 to F19; 
    row 20:  sums: D20:= SUM(D16:D19); copy D20, then paste on E20 to F20; 
    row 22:  value, duration: C22:= D20 ;  F22:= E20/D20; 
    row 23:  i-convexity, i-volatility-convexity: C23:= F20/D20 ;  F23:= -F20/E20. 

9.2.5. Approximated estimations of price fluctuation 

Let us explain, using the assumption of a flat-yield structure, an alternative  
interpretation of FYC duration and convexity. Multiplying by a small enough spread 
d  we obtain the approximate formula: 

 V ( )
V ( )

   V ' ( )
V ( )

d   = D d (9.18) 

which gives a significant sense of FYC duration. Indeed, since V( )/V( ) gives the 
rate of V( ) variation, by multiplying D by a small increase (or small decrease) of , 
we obtain in an approximate way the corresponding relative decrease (or relative 
increase) of V( ).11 For this reason D is a 1st order sensitivity indicator of price with 
respect to rate changes. By virtue of (9.18), we deduce the simple formula  

 V ( 0 d )  V ( 0)(1 D d )  (9.18') 

obtained by the Taylor expansion, restricted to the 1st order, over V( ). It allows an 
approximate estimate of new price consequent to a market rate change in regard to 
bond, whose price and duration are given according to a previous rate.  

In addition, let us observe that the convexity is a 2nd order sensitiveness indicator 
of price with respect to rate changes. Along with duration, it enables us to improve 
the rough valuation of variation of values (or prices) depending on the variation of 
                                                 
11 Therefore, with the same change of , in a bond having high (or low) duration, we obtain a 
high (or low) relative change of price, having an opposite sign with respect to that of d . 
Thus, this rule follows: it is better to invest in bonds with low duration in case of expectation 
of increasing rates; on the contrary, to invest in bonds with high duration in case of 
expectation of decreasing rates. 
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market intensity, expanding the Taylor formula V( ) up to 2nd order. Then we obtain 
the following improved estimate: 

 V ( 0 d ) V ( 0) V ' ( 0)d V"( 0)(d )2 /2  

 V ( 0)(1 D d (d )2 /2)  (9.19) 

and then the consequent relative variation 

 2( )
( ) / 2

( )

V
D d d

V
 (9.19') 

Example 9.6 

Let us consider at 0 a bond that gives rise to the distribution of J specified in 
Exercise 9.2. Under the annual rate i0 = 4.75% or the corresponding intensity 0 = 
0.049406, the values D = 4.1086;  = 19.9060 have been obtained. Let us calculate 
by an Excel spreadsheet, given below, the value (or price) at 0 corresponding to 0 
and the values (or prices) at 0 corresponding to spreads d = +0.003 and                 
d = -0.004. 

 CALCULUS  OF  BOND  PRICES  BY DURATION (given ) 

     

 Duration = 4.1086  -convexity = 19.9060 

 Intensity = 0.046406 0.049406 0.042406 

     
Amounts Maturities Values at 0 Values at 0 Values at 0 

8.520.00 0.50 8,324.59 8,312.11 8,341.25 

11.400.00 2.00 10,389.56 10,327.41 10,473.01 

6.450.00 3.50 5,483.04 5,425.77 5,560.34 

61.800.00 5.25 48,437.38 47,680.47 49,465.32 

     

True initial price              = 72,634.56 71,745.75 73,839.92 

Initial price using  (9.18') = 72,634.56 71,739.28 73,828.27 

Initial price using (9.19)   = 72,634.56 71,745.79 73,839.84 

     

True V/V = 0.000000 -0.012237 0.016595 

Approximate V/V using (9.18) = 0.000000 -0.012326 0.016434 

Approximate V/V using (9.19') = 0.000000 -0.012236 0.016594 

Table 9.2. Example of calculus of bond prices 
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In this table, after data inputs (duration and three intensities) the subsequent four 
rows give by column the amounts, the maturities and the inflow present value 
depending on the three intensities. Then in the following rows the prices at 0 are 
calculated by adding up, by column, and, for each intensity, are compared with their 
estimates according to (9.18') and (9.19). The subsequent three rows give 
comparisons among the relative variations of true prices and those deduced by 
(9.18) and (9.19'). 

The Excel instructions for non-empty cells are as follows: duration in B3 and 
three intensities in C4, C5, C6. Rows from 7 to 10:  
column A:  inflow data;  
column B: time data;  
columns C,D,E (cash-inflows present values): C7:= $A7*EXP(-C$4*$B7); copy  
 C7, then paste on C8-C10, on D7-D10, on E7-E10; 
row 12:  C12:= SUM(C7:C11); copy C12, then paste on D12-E12; 
row 13:  C13:= $C12*(1-$B3*(C4-$C4)); copy C13, then paste on  
 D13-E13;  
row 14:  C14:= $C12*(1-$B3*(C4-$C4)+$E3*(C4-$C4)^2/2); copy C14,  
 then paste on D14-E14; 
row 16:  C16:= C12/$C12-1; copy C16, then paste on D16-E16; 
row 17:  C17:= -$B3*(C4-$C4); copy C17, then paste on D17-E17; 
row 18:  C18:= -$B3*(C4-$C4)+$E3*(C4-$C4)^2/2; copyC18, then paste  
 on D18-E18. 

Let us now reconsider the previous expansions, assuming the rate i to be a  
variable of yield (let us recall (9.16') and (9.17')). In this case, taking into account 
the formulae  

V(i) = Sh (1 i)-th
h 1
n

,   V'(i)= -
hth S (1 i)-th 1

h 1
n   

we immediately obtain: 

 
  

V ' (i)
V (i)

 =  
-D

1+i
 =  - D v  (9.20)  

that also follows from (9.13') by observing that 
 

d

di
=

d ln(1+i)

di
v  and then 

1 1 -D
= =

1+i

dV dV d

V di V d di
. Therefore, to make the previous approximations with use 

of the annual rate, the same expansions can be repeated using D*=D/(1+i) (called 
modified duration or volatility) instead of D. In particular, (9.18) becomes  

 V (i)
V (i)

V ' (i)
V (i)

di  = d lnV(i) = D

1 i
di (9.20') 
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and (9.18') becomes 

 
V (i0 di) V (i0) 1

D

1 i0
 di

 (9.20") 

Also, for V(i) we can find a better approximation of its change estimate by also 
considering (9.16') and Taylor expansion up to 2nd order. Thus, we obtain a better 
estimate by 

 V (i0 di) V (i0) V ' (i0)di V"(i0)(di)2 /2  

 
V (i0) 1

D

1 i0
 di

2(1 i0)2
(di)2

 (9.21) 

and by (9.21) the consequent relative variation depending on i: 

V (i)
V (i)

D

1 i
 di i

2(1 i)2
(di)2 (9.21') 

Example 9.7 

Let us again take Example 9.6 with the same cash-inflow distribution, but 
considering rate variations. Under the annual rate i0 = 4.75% we obtained in 
Exercise 9.2 the following values: D = 4.1086; i  = 24,0146. Let us now calculate, 
using Excel table below, the value (or price) at 0 corresponding to i0 and the values 
(or prices) at 0 corresponding to rate variations di = 0.004 and di = -0,004 as well as 
the relative variations. 
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     CALCULUS OF BOND PRICES  BY DURATION (given i) 

     

Duration =  4.1086  i-convexity= 24.0146 

 Rate  i = 0.0475 0.0515 0.0435 

     
Amounts Maturities Values at 0 Values at 0 Values at 0 

8,520.00 0.50 8,324.58 8,308.74 8,340.52 

11,400.00 2.00 10,389.55 10,310.66 10,469.36 

6,450.00 3.50 5,483.03 5,410.37 5,556.95 

61,800.00 5.25 48,437.29 47,477.71 49,420.04 

     

True initial price = 72,634.45 71,507.48 73,786.87 

Initial price using (9.20") = 72,634.45 71,494.88 73,774.03 

Initial price using  (9.21) = 72,634.45 71,507.60 73,786.74 

     

True V/V = 0.000000 -0.015516 0.015866 

Approximate V/V using (9.20') = 0.000000 -0.015689 0.015689 

Approximate V/V using (9.21') = 0.000000 -0.015514   0.015864 

Table 9.3. Example of calculus of bond prices 

The Excel instructions are as follows. Duration in B3 and the three rates in C4, 
C5, C6. Rows 7 to 10:  

column A:  inflow data;  
column B: time data;  
columns C,D,E (inflows present values): C7:= $A7*(1+C$4)^-$B7; copy C7, then  
 paste on C8-C10, on D7-D10, on E7-E10; 
row 12:  C12:= SUM(C7:C11); copy C12, then paste on D12-E12; 
row 13:  C13:= $C12*(1-$B3*(C4-$C4)/(1+$C4)); copy C15, then paste on  
 D15-E15; 
row 14:  C14:=$C12*(1-$B3*(C4- 
 -$C4)/(1+$C4)++$E3*(C4$C4)^2/(2*(1+$C4)^2)); copy C14, then 

paste on D14-E14; 
row 16:  C16:= C12/$C12-1; copy C16, then paste on D16-E16; 
row 17:  C17:= -$B3*(C4-$C4)/(1+$C4); copy C17, then paste on D17-E17; 
row 18:  C18:=-$B3*(C4-$C4)/(1+$C4)+$E3*(C4- 
 -$C4)^2/(2*(1+$C4)^2); copy C18, then paste on D18-E18.  
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A generalization 

We can analyze the change of value (or price) in more general assumptions, 
using the symbols in (7.28) and assuming a spot-price structure  

{v(0,h)} = {[1+ih]-h}. 

For the sake of simplicity we consider a bond implying cash-inflow due to 
varying coupons Ih and  redemption in C. The price (or value) at 0 of such a bond is 
given by 

 V Ih (1 ih ) h
h 1

n
C(1 in ) n   (9.22)  

The duration D  at 0 on the basis of this structure by virtue of (9.4) is      

 
1

(1 )  (1 ) /
n h n

h h nh
D h I i n C i V . (9.23) 

V can be considered a function of spot-rates i1,i2,...,in. Its total differential, 
corresponding to increments of spot-rates all equal to , is  

 1 1

1

* (1 )  (1 )  
n h n

h h nh
dV h I i n C i D V  (9.24) 

depending on a modified duration D*, that here is equal to  

 1 1

1

* (1 )  (1 ) /
n h n

h h nh
D h I i n C i V . (9.23') 

By dividing the sides of (9.24) by V, we obtain the relative variation    

 dV

V
D*  (9.25) 

that generalizes (9.13') and highlights that D* is a sensitivity index. From (9.25) we 
find that 

 V (i1 ,...,in ) V (i1,...,in )(1 D* )  (9.25') 

which generalizes (9.20") and easily gives the new price corresponding to a uniform 
variation of rate structure.  
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9.3. Rate risk and classical immunization 

9.3.1. An introduction to financial risk 

Among the more frequently discussed problems concerning risk theory in 
finance are those of interest rate risk. Such a risk also appears in operations agreed 
under certainty and considered safe from risks, such as the investments in bonds. To 
clarify the problems of the risk theory we refer only to investments in bonds, bearing 
in mind that the application’s field is much wider.  

As shown in sections 6.9 and 6.10, in a bond loan where all the securities have 
the same maturity (and we talk about only one maturity) the rate of return (IRR) is 
defined as that rate at which is zero the present value, calculated at the issue, of the 
algebraic sum of the cash-flow owing to the buyer of the bonds. In case of 
differentiated maturities, e.g. by a draw rule, the ex-ante yield is a mean value in 
relation to the redemption maturities of the bonds. We define the bond ex-post rate 
the as the real rate achieved according to the date of refund and then to the realized 
length of life. We saw that the ex-post rates always coincide with the coupon rate for 
the bonds whose purchase value coincides with the par and redemption value (i.e., 
par bonds).   

Examining this more closely, because in a financial operation’s valuation it is 
necessary to take into account all the payments made in the time horizon of such an 
operation, then referring to only the coupon bond (or more than one coupon bond, 
but where all the bonds have the same maturity) it is necessary to distinguish three 
types of yield:  

a) the initial yield, i.e. the IRR, also called the ex-ante rate and denoted by ri , 
which is the rate that makes the present value (at the moment issue or purchase) of 
both receipts and payments equal. Then ri is obtained not considering the 
reinvestment of coupons cashed during the bond’s lifetime, or else considering 
them, but – as it will soon be proved – supposing that the reinvestments are 
profitable according to a rate equal to IRR (then supposing that the curve of the 
market rates is flat-yield curve throughout the bond’s lifetime). Moreover, this rate 
coincides with the yield rate defined in section 7.2 in the case of bonds with a 
certain return and constant coupon or ZCB;  

b) the yield at maturity, here denoted by rm , i.e. an ex-post rate realized on a 
bond at its maturity, taking into account the reinvestment rates obtained on the 
cashed coupons;  

c) the yield in advance12, here denoted by ra , which is analogous to rm  but 
referred to a sale and realization before the maturity. 
                                                 
12 Obviously the yield in advance has not to mistake for the discount rate (or advance interest 
rate) defined in Chapter   3. 
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Let us prove the equivalence stated in a) and summarized as the following: 

 

Theorem A. Let us suppose that issue (or purchase) price at 0, nominal value and 
redemption value of a bond are equal to C, so that ri =i (= coupon rate). If in bond 
management we also consider the reinvestments of coupons as cashed up to maturity 
and their yield is ri , then rm = ri holds true. On the contrary, without reinvestments, 
rm<ri holds true.  

 

Proof. The latter point is evident after proving the former one. For this purpose we 
observe that each of n coupons is equal to R = Ci . Let F(n) be the accumulated 
value of cash-inflows. Using the given assumptions and with C as the redemption 
value, we obtain 

 
F (n) C R R(1 ri ) ... R(1 ri )

n 1 C R
(1 ri )

n 1

ri  

In addition, with C as the purchase price and ri  as the coupon rate, then R = Cri, 

 (1 ) 1 / (1 ) 1
(1 ) 1 (1 )

n n
i in ni

m i i
i

C R r r r
r r r

C r
 

results. Thus rm = ri .        

In light of the previous reasoning, it is evident that the bondholder must have to 
consider as random the return of reinvestment revenue due to future cashed coupons 
as well as the bond price in the case of future sale before the fixed maturity, which is 
calculated by discounting, at the time of sale, the future flows due to the buyer as 
coupons and redemption. Hence the financial rate risk, which is of two types: 

1) reinvestment risk, which is the due to the future random fluctuation of market 
rate  on the reinvestment of cashed coupons; 

2) realization risk, which is the due to the future random fluctuation of the same 
market rate on the bond price in case of sale in advance.  

The effects of two risks are not in accordance with each other; then we obtain a 
partial compensation, whose degree depends on sale time t" [0,n], where [0,n] is the 
time interval of investment.  

Let us explain the problem with reference to an investment operation O in [0,n]  
with the only outcome being -P at 0 and receipts being Rh>0 at time th [0,n] where 
tn= n. Such quantities enable the valuation, at 0, of the rate of return ri. Let r(t) be 
the rate of return, generally varying with respect to the time. It is evident that r(0) = 
ri.   
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In the ideal assumption that the market rate be invariant in the whole  interval 
[0,n], the yield of O retains the level of the rate r(0), since at such a rate we can 
reinvest the intermediate revenues Rh

13. In case of selling in advance, the 
transferor’s and transferee’s returns depend on the transfer price. However, if at this 
price the seller retains the rate of return x, such a rate is also valid for the buyer14. 

However, if  0t  such that ( ) ir t r , then owing to market rate variation 
regarding reinvestments and price of realization in advance, the performances 
change and a decrease is possible, and the expectations, which were valued at 
purchase time, fail. Then the problem of immunizing arises, i.e. of neutralizing the 
effects of risk due to rate r(t) fluctuations.  

Limiting ourselves to operation J  = ht & hR  of inflows, regarding its value 
V(t,r) at t, subject   to (tk  t  tk+1) under rate r, the result is: V(t,r)= F(t,r) + P(t,r), 
where   

 F(t,r)  =  Rh (1 r) t th
h 1
k

 (9.26) 

is the accumulated amount at t, on reinvesting under rate r the cash-inflows before t, 
and  

 P(t,r)  =  Rh (1 r) ( th t)
h k 1
n

    (9.26')  

is the present value at t under rate r of cash-inflows after t, then the price of 
realization in advance at t. Obviously this results in 

                                                 
13 Let us use as an example a bond as specified in section 6.10, bought in 0 at the price z (so 
generalizing the previous theorem) with c as the redemption at time n and annual coupons 
according to the rate i. By the defining equation, whose solution is the (initial) yield rate x, 

then written as: -z+ci an |x +c(1+x)-n = 0, we obtain, multiplying by (1+x)n: ci sn |x +c = 

z(1+x)n. The left side is the economic outcome in n of z invested in 0, with reinvestments 
according to the rate x of coupons as cashed. Since it equals the right side z(1+x)n, the ex-post  
yield is x. The opposite is also true.  
14 Referring to the bond in footnote 13, in case of a sale after only m years with price p, and 
of coupon reinvestment at rate x both by the seller and by the buyer, the fairness equation of O 
on x, quoted in footnote 13, can be written (multiplying by (1+x)m and considering that, if 

n>m, an |x = am |x +(1+x)-m an -m |x ), as: 

[-z(1+x)m + ci sm |x +p] +{-p + ci an -m |x + c(1+x)-(n-m)} 
The F quantity in square brackets is the value in m of the transferor’s O' operation, whereas 
the P quantity in curly parentheses is the value in m of the transferee’s O" operation. If p is 
such that F=0, i.e. it is the retrospective reserve in m, O' is fair under rate x; then x is the 
transferor’s rate of return. However, because of the O fairness the price p is also the 
prospective reserve in m, then P=0 and then O" is fair under rate x; then x is also the 
transferee’s rate of return.  
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 V(t,r)= F(t,r) + P(t,r) = Rh (1 r)t th
h 1
n

  (9.27) 

Given t, it is evident (and immediately verified, using the derivative with respect 
to r) that F(t,r), obtained by accumulating, is an increasing function of r, whereas 
P(t,r), obtained by discounting, is a decreasing function of r. 

Let us assume, for the sake of simplicity, that in [0,n] the function r(t) is subject 
to only one variation in t'  t1 , changing from r(0) to r* = r(0)+ r (where r>0 or 

r<0). Under such a change, assuming t1  t  tn, if t is close to t1 , the variation of 
F is small whereas that, opposite in sign, of P is large. Then by virtue of (9.27) the V 
variation has the sign of the P variation. On the contrary, if t is close to tn , the 
variation of F is large whereas that, opposite in sign, of P is small. Then due to 
(9.27) the V variation has the sign of the F variation. Owing to the continuity of such 
functions, this result implies the existence of a critical time ˆ t  regarding the sale in 
advance, which produces opposite values of F and P variations. Then V remains 
unchanged. Using symbols we have:  V ( ˆ t ,r*) V ( ˆ t ,r(0)) . Thus, we obtain a 
thorough neutralization of r(t) variation’s effects on such values, then on ra rate, 
which would agree with ri = rm without following the variations of the initial market 
rate r(0). The calculation of such a critical time is based on classic immunization 
theory, which will be addressed in section 9.3.2. 

The following examples, which recall an exercise given in Devolder (1993), 
refer to different settings of realization time t" from that of market rate change 
(assumed to be only one) t’  and the maturity n of a bond with annual coupons; for 
simplicity they all refer to the purchase of a security at issue (at 0) with purchase 
price = par value = redemption value = 100, then  ri  = r(0) = coupon rate.  

Example 9.8. Sale in advance at time t"=t'=2 of a bond with maturity n=10. 

Let us put r(0) = ri = 0.05 = 5% and assume that the set  of “states”, 
concerning the dynamics of the market rate r(t) into the interval [0,10], is given only 
by the following events: 

0= (no change of r(t) at [0,10]t ); 

1= (only one change of r(t) at t0 = 2, given by  = +0.01 = +1%); 

2= (only one change of r(t) at t0 = 2, given by  = -0.01 = -1%); 
Clearly, if 0 is true, it results in ra = rm = ri = 0.05. Let us consider two other 
events 1and 2, denoting by ( )  the dependence on the  state.  

The sum F (2) , accrued by an investor owing to cashed coupons at periodic 
maturities and reinvested up to sale at  t"=2, do not depend on the  state, because 
changes of r(t) into [0,2) do not occur. The sum is given by  
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 F (2)  =  5 (1.05) + 5 = 10.25 

The sale price P (2)  follows by rates r(t) in [2,10], thus depends on the  state: 

P (2) 5a8 |r( ) 100[1 r( )] 8  

  if 1:  r ( 1)  = 0.06,  P
1

(2)  = 31.05 + 62.74 =   93.79 

 if 2:  r ( 2)  = 0.04, P
2

(2)  = 33.66 + 73.07 = 106.73 

The seller’s total revenue at t" = 2 is S (2)  = F (2)  + P (2) . Then  

 if 1:  r ( 1)= 0,06, S
1

(2)  = 104.04 

 if 2:  r ( 2)= 0,04, S
2

(2) = 116.98 

 The yield in advance ra ( )  depends on  state, as it is solution of   

100 [1 ra ( )]2 S (2)  

If 1, we obtain:  ra ( 1)  = 0.020000 ; if 2:  ra ( 2)  = 0.081573, then 
ra ( 1)< ra ( 2)  with a large difference among them and ri which is in the middle. 
As t" = t', a reinvestment risk does not exist, because the coupons are reinvested in 
[0,2] under certain rate r(0) = 0.05 whereas the risk of realization exists with a large 
decrease (increase) of the sale price and of the yield in advance when the market rate 
increases (decreases). 

Example 9.9. Sale in advance of a bond with maturity n=10 at time t"=6                   
in the middle from t'  and n.  

On the basis of the data and events set out in Example 9.8, except for t"=6, we 
obtain the following results. 

The sum F (6) , accrued by the investor due to cashed coupons at periodic 
maturities and reinvested up to sale at t" = 6, depends on the  state and is given by 

 F (6) 5 {1.05 [1 r( )]4 s5 |r( )}  

  if 1:  r ( 1)  = 0.06, F
1

(6)   = 5 (1.325601+5.637093) = 34.81; 

 if 2:  r ( 2) = 0.04, F
2

(6)  = 5 (1.228351+5.416323) = 33.22. 
The sale price P (6)  depends on the  state and is given by 

P (6) 5 a4 |r( ) +100 [1 r( )]4
 

 if 1:  r ( 1) = 0.06,  P
1

(6)  = 17.32 + 79.21 =   96.53; 

 if 2:  r(  2 ) = 0.04, P
2

(6)  = 18.15 + 85.48 = 103.63. 
The seller's total revenue at t" = 6  is S (6)  = F (6)  + P (6) . Then     
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 if 1:  r(  1 ) = 0.06,  S
1

(6)  =  131.34; 

 if 2:  r(  2 ) = 0.04, S
2

(6)  =  136.85. 

 The yield in advance ra ( )  depends on  the  state, as it is the solution of  

100 [1 + ra ( )]6 S (6)  

If 1, we obtain: ra ( 1)  = 0.046485 ; if 2:  ra ( 2)= 0.053677. 

Compared to the results of Example 9.8, the difference between ra ( 1)  and 
ra ( 2)  is much reduced, since these rates are approaching  the value of the initial 
market rate, 0.05. As t'<t"<n, both the reinvestment risk on cashed coupons from  
time 2 to 6, and the realization risk exist, owing to the advance of the sale in respect 
to the maturity, which implies a discount from time 10 to 6 under a random market 
rate. 

Example 9.10. Realization of a bond at maturity n=10 

On the basis of the data and events set out in Example 9.8, except for t" =10, we 
obtain the following results. 

The sum F (10) , accrued by the investor due to cashed coupons at periodic 
maturities and reinvested up to realization at time 10, depends on the  state and is 
given by  

F (10) 5 {(1.05)[1+ r( )]8 s9 |r( )}   

 if 1:  r ( 1)  = 0.06, F
1

(10)   = 5 (1.673540+11.491316) = 65.82; 

 if 2:  r ( 2)  = 0.04, F
2

(10)  = 5 (1.368569+10.582795) = 59.76. 

 The realization value is certainly P (10) =100; it does not depend on the  state, as 
it lacks a discount under a random rate. 

 The seller’s total revenue at t" =10 is S (10)  = F (10)  + P (10) . Then 

 if 1:  r ( 1)  = 0.06,  S
1

(10)  = 165.82; 

 if 2:  r ( 2)  = 0.04, S
2

(10)  = 159.76. 

The yield in advance ra ( )   becomes yield to maturity rm ( ) because the 
realization occurs at fixed maturity; it depends on  state, as it is the solution of   

100 [1 + rm ( )]10 S (10)  

If 1, we obtain: rm ( 1)  = 0.051874 ; if 2:  rm ( 2)  = 0.047965 then 
rm ( 1)  > rm ( 2)  with a small difference between them and ri  which is in the 
middle. As t" = n , a realization risk does not exists but the reinvestment risk exists 
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with an increase (decrease) of total revenue and yield at maturity when the market 
rate increases (decreases).  

Note 

In Examples 9.8 to 9.10 when 2=t'  t"<n=10, the rates of return in the middle, 
between those achieved for t"=2 and t"=10, have been obtained. By varying t" 
continuously from the time 2 to 10, the rate ra ( 1)  increases from 0.0200 to 0.0519, 
whereas the rate ra ( 2)  decreases from 0.0816 to 0.0480. Then it is plausible that, 
as ra ( 1)  and ra ( 2)  are continuous functions of t", we can settle on a critical time 
ˆ t  of investment (2< ˆ t <10) for which ra ( 1) = ra ( 2) , so that two opposite effects 

of a market rate's change exactly compensate one another. Then, for this critical time 
ˆ t  we obtains:  

ra ( 1)  = ra ( 2)  = ra ( 0)= 0.05 = ri   (certain rate). 

In such a way the risk rate is removed. 

9.3.2. Preliminaries to classic immunization 

In section 9.3.1 we dealt with rate risk and critical time ˆ t of investment, which 
allows the removal of such a risk by suitable methods. Now we address processes, 
called classic immunization, that we also call semi-deterministic because all 
elements of involved operations are fixed except for the market interest rate, which 
is exposed to random changes.  

We will begin with the critical time calculation which removes risk rate in a  
particular context. We will give some theorems concerning semi-deterministic 
immunization, distinguishing between problem of cover of single liability and cover 
of multiple liabilities problems15. 

The market term structure, if not flat-yield, will be identified by temporal 
changes of intensity (x,u) as defined in Chapter 2, where x is the time of agreement 
or valuation and u is the current time (see section 7.5.3 for other characteristic 
quantities of term structure).  

In classic immunization we usually take the hypothesis of additive shifts of rates, 
i.e. of random changes Yk, from x to t, of the instantaneous intensities corresponding 
to them, whose result is Z (x, t) Ykk . Therefore, with x<t<y 

                                                 
15 For a thorough analysis on such subjects, see Devolder (1993) and De Felice Moriconi 
(1991). 
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(t,y) = (x,y) + Z(x,t)     (9.28)16 

However, for simplicity we will proceed under the assumption of only additive 
shifts in the considered time interval.  

9.3.3. The optimal time of realization     

In section 9.3.1 we have seen that, in the case of only random additive shifts, for 
continuity in the interval of financial cash-inflows operation J a critical time ˆ t  
exists, such that the random change of value (and thus of the fulfilled rate of return) 
due to additive shifts, vanishes. Now we look for the calculation of  this ˆ t .  

It is not restrictive, and it simplifies symbols, to put the time origin in the instant 
of J valuation and of rate (or intensity (0, )u ) agreement. Moreover, let us assume 
that in the J interval only one additive shift on (0, )u  of random size Y occurs in the 
market at time t', before times {tk} (k=1,...,n), set in chronological order, where the 
inflows of J, components of vector a ={ak}, are cashed. Thus, the intensity  (0, )u  
from 0 to t' and ( ', )t u  from t' to tn are in force in the market, linked by 

(t’,u) = (0,u) +Y   ,  0 < t’< t1<...< tk <...< tn  ; u >t’ (9.29) 

Let us denote by V(T,a;Y) (where the 3rd variable represents the size of a possible 
shift) the value in T  tn of total revenue due to a, obtained adding reinvestment 
revenue and realization revenue. Thus, this value depends on random shift size. 
Lacking shift, it results in 

     V (T ,a;0) = akk=1

n
e

(0,u )du
T

tk

 (9.30) 

On the other hand, if the additive shift Y occurs at t' < t1 , according to (9.29) the 
total revenue due to a at T is given (by distinguishing reinvestment and realization 
components) by 

    
V (T ,a;Y ) = akk:tk T

e
( t',u )du

tk

T

akk:tk T
e

( t',u )du
T

tk

 

= akk 1
n

e
( t',u )du

T

tk

akk 1
n

e
(0,u )du

T

tk

e Y ( tk T ) 

 

                                                 
16 In the case of flat-yield structure, unless additive shifts, (9.28) becomes: t = x+Z(x,t), 
where u is the intensity agreed at u. 
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Thus 

 
    
V (T ,a;Y ) =

1

v(0,T )
akk 1

n
v(0,tk )e Y ( tk T )  (9.30') 

where v(0, t) e
(0,u)du0

t

 is the price at 0 of an unitary zero coupon bond (UZCB) 
having maturity at t, valued according to (0,u) (see (7.42)). 

Since the second derivative with respect to Y of   V (T ,a;Y ) for every Y is 
positive, the function f(Y) =    V (T ,a;Y ) has the absolute minimum point at Y=0 (then 

    V (T ,a;Y ) V (T ,a;0)  for every Y if the first derivative of f(Y) vanishes at 0. Then 
we obtain the immunization. However, this sentence is true if T is chosen equal to 
the duration of J. In fact, due to 

    Y
V (T ,a;Y )

Y 0

1
v(0,T )

akk 1
n

v(0,tk ) 0  

it follows that  

T
tkakv(0,tk )

k 1
n

akv(0,tk )
k 1
n

DJ (0)  

Then we conclude: ˆ t DJ (0) , i.e., the critical time for immunizing against 
interest rate risk is the duration of J valued at 0. Moreover, ˆ t is the only solution to 
the problem. 

Example 9.11 

Carrying out Examples 9.8, 9.9 and 9.10, on the basis of data and events 
specified in Example 9.8, except for t", let us verify that, putting the investment time 
equal to duration, we obtain immunization. 

Let us buy the bond at 0 and redeem it at par in a maturity of 10 years, par value 
100, rate r(0) = ri = 0.05 = 5%. The duration at 0, according to (9.9), is worth D = 
8.107822. Let us calculate the economic results obtainable under the various states 
of .  
 F (8.107822)  = 5 {(1.05)[1+ r( )]6 + s7 |r( )}[1+r( )]0.107822 

 if 1:  Y = +0.01,  r ( 1) = 0.06, F
1

(8.107822)  49.73; 

 if 2:  Y = -0.01,  r ( 2) = 0.04, F
2

(8.107822)  46.33; 
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 (8.107822)P  = {5 a2 |r( )+ 100 [1+ r( )]-2}[1+ r( )]0.107822 

 if 1:  Y = +0.01,  r( ( 1) = 0.06,  P
1

(8.107822)  = 98.79 

 if 2:  Y = -0.01,  r( ( 2) = 0.04, P
2

(8.107822)  = 102.32; 

The seller's total revenue at t1 = 8.107822 is 

 S (8.107822)  = F (8.107822)  + P (8.107822) . Then 

 if 1:  Y = +0.01,  r( ( 1) = 0.06,  1
(8.107822)S  =  148.52; 

 if 2 :  Y = -0.01,  r( ( 2) = 0.04,  2
(8.107822)S  =  148.65. 

The yield in advance ra ( )  depends on state, as it is the solution of  

100 [1+ra ( )]8.107822  = S (8.107822)  

If 1, we obtain:  ra ( 1) = 0.0500 ; if  2 :  ra ( 2) = 0.0501 

To conclude: S
1

(8.107822)  S
2

(8.107822)  and ra ( 1)  ra 2( ) 0.05. 
Therefore, we obtain immunization against rate risk using an investment the time 
length of which is its duration = 8.107822. 

9.3.4. The meaning of classical immunization  

Let us proceed, step by step, to analyze in depth the immunization with respect 
to yield shifts under increasing generalization, summarizing the characteristic 
features of a theory which would need a wider treatment. 

For the sake of simplicity, let us use 0 for the valuation time where the intensity 
(0,u) identifying the structure is agreed. We refer to operation O giving a vector a = 

(a1,..., an) of cash-inflows (also called assets) and a vector b = (b1,..., bn) of cash-
outflows (also called liabilities). It is not restrictive to assume that a and b have the 
same tickler t = (t1,..., tn), under the constraints {ah 0},{bh 0}, because t can be 
obtained by the union of {ah > 0} and {bh > 0} ticklers17. Denoting by V(0,a;0) the 
value at 0 of assets and by V(0,b;0) that of liabilities, if V(0,a;0) = V(0,b;0) results, 
we can tell that the flows a and b are in equilibrium. This equality is also called a 
budget constraint. Moreover, by definition flows a and b are immunized if, with 
only one additive shift Y (positive or negative, and with small size) at the time 
t'<t1<...<tn , V(0,a;Y)  V(0,b;Y) holds. This weak inequality assures the cover by a 

                                                 
17 In such a case, if compensations between assets and liabilities are allowed, then at each 
maturity th we cannot have net receipts ah-bh and net outlays bh-ah both positive. 
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of the liabilities b18. Denoting by s = (s1,..., sn), where sh = ah -bh, the net flows 
vector and by V(0,s;0) its value at 0, the equilibrium implies: V(0,s;0) = 0 and we 
have immunization if furthermore V(0,s;Y)  0. In other words, immunization 
implies that the function f(Y) = V(0,s;Y) has a local minimum point at Y = 0. 

9.3.5. Single liability cover 

We have immunization against random additive shift following the Fisher-Weil 
theorem (1971) if the revenue due to a “portfolio” at the end of the period of its 
management is, in case of an additive shift, not lower than that obtainable without a 
shift. It is easy to prove that to keep the bond up to maturity, on reinvesting the 
encashments, generally does not give immunization (see Example 9.10).  

Let us state the version of the Fisher-Weil theorem that works on present values 
and gives the immunization conditions in asset portfolio management to cover only 
one liability (or, which is the same, a financial target which implies future outlays) 
under any term structure. 

Theorem B (Fisher-Weil). Given the intensity (0,u) summarizing the structure at 0, 
let b be the amount of a payment scheduled at time T>0 and a = (a1,..., an) be an 
asset flow at positive times t1<...<tn . Assume the value at 0 of a is equal to that of  b 
according to (0,u), i.e., the following budget constraint is valid: 

 V(0,a;0) = V(0,b;0)  (9.31) 

If at t', where 0<t'<t1, a random additive shift Y according to (9.29) occurs, then 
for the values calculated under the new intensity 

 V(t’,a;Y)  V(t’,b;Y)  (9.32) 

results, if and only if the duration of a calculated at 0 equals maturity T of the 
liability.  

Proof.  Using  

(a,b;0) = V(0,a;0)/V(0,b;0)  =   

                                                 
18 It would be more convenient to use t' = 0 for an immediate comparison with the 
equilibrium case. However, this is not needed. We can observe that  

V (0,a;Y ) e
(0,u)du0

t '

V (t' ,a;Y ) , V (0,b;Y ) e
(0,u)du0

t '

V (t' ,b;Y ) ; 
then V (t' ,a;Y ) V (t' ,b;Y )  implies V (0,a;Y ) V (0,b;Y ) , and vice versa. It must be 
highlighted that in the times following t' the discounts have carried out using the intensity 
(t',u). 
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 = 
ake

(0,u )du
0

tk

k 1
n

b e
(0,u )du

0

T

1
b

ake
(0,u )du

tk

T

k 1
n  (9.33) 

because of (9.31) (a,b;0) =1 results. After shift Y at t', (a,b;0) is modified in 

g(Y) = (a,b;t’,Y) = V(t’,a;Y)/V(t’,b;Y) = 
ake

(0,u )du
0

t '

e
( t',u )du

t '

tk

k 1
n

b e
(0,u )du

0

t '

e
( t',u )du

t '

T
 

 (9.34)  
thus, due to (9.29) 

 g(Y) = (a,b;t’,Y) = 
1
b

ake
(0,u )du

tk

T

eY (T tk )
k 1
n

 (9.34') 

By calculating the first and second derivative of g(Y) we obtain    

  g'(Y) = 
(0, ) ( )

1
1

( ) k

T

t k
u dun Y T t

k kk T t a e e
b

   (9.35)

  

 g"(Y) = 
(0, ) ( )2

1
1

( ) k

T

t k
u dun Y T t

k kk T t a e e
b

 (9.36) 

We obtain: g"(Y) >0, Y, then (9.34') is a convex function. If and only if g'(0)=0, 
g(Y) holds the minimum point at Y=0 where its value is 1. Therefore, around Y=0 it 
results in g(Y) = (a,b;t’,Y)  1, i.e. (9.32) holds. However, owing to (7.42) and 
(9.35), g'(0)=0 is equivalent to 

    

(T tk )akv(0,tk )
k 1
n

b v(0,T )
0 

Taking into account the budget constraint in (9.31), written as 

    
akv(0, tk )k 1

n b v(0,T ) , the equation g'(0)=0 is also equivalent to 

 D:= 
tkakv(0,tk )

k 1
n

akv(0,tk )
k 1
n

T   

Summarizing the reasoning, the budget constraint in (9.31) between a and b 
signifies, if the term rates structure remains unchanged, the suitability of receipts a 
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under the tickler t = {t1, ...,tn), 0<t1<...<tn , for covering outlay (or target) b at time 
T, accumulating or discounting by law v(0,t). Under a random additive shift, the 
cover is still assured provided that T equals D0(a), i.e. the duration of a at 019. 

Immunization gives a guarantee of yield at the minimum assured 
rate b /V (0,a; 0) 1 . Theorem B can be applied to the selection of immune 
portfolios  in order to obtain a single liability cover.  

The operational meaning of Theorem B is as follows. To obtain immunization, 
we should build a portfolio of assets, the duration of which in 0 equals T. This is 
always possible, because of the duration’s mixing property (see section 9.1.4) and 
the associative property of the averages considered here (see section 2.5.2).  

In fact, let us assume that in 0 the market gives two bond packages (that without 
loss of generality we can assume to be of the ZCB type). Let each bond of such 
packages be the redemption values U1 and U2 at maturities t1 and t2, (t1<T<t2), 
respectively. If T=t1 or T=t2 occurs, the immunization problem would be trivially 
solved, choosing only one of the packages. The market financial law should be 
identified by spot prices {v(0,u)},  (0 u t2). We can settle the portfolio a = (a1, a2) 
with tickler t = (t1, t2) to cover the liability b (or to assure the target b) in T, by 
calculating the shares (i.e. the numbers 1, 2 of the bonds of two packages) to 
make up a so as to satisfy the budget constraint on values at 0 and the constraints on 
a duration at 0. Using V(0,b) = b v(0,T), is sufficient to solve the linear system  

 1U1v(0,t1) 2U2v(0,t2) V (0,b;0)

t1 1U1v(0,t1) t2 2U2v(0,t2) T V (0,b;0)
 (9.37) 

If linear independence between such equations holds, we obtain the following 
only solution  

 1
V (0,b;0)(t2 T )
U1v(0,t1)(t2 t1)

 , 2
V (0,b;0)(T t1)

U2v(0,t2)(t2 t1)
 (9.38) 

If N types of ZCB subject to law {v(0,u)} are available in the market, having par 
values  U1, U2 , ..., Un , is sufficient to put them into two subgroups and, owing to 
the mixing property, to obtain two portfolios having face value amounts U1

*, U2
*  and 

durations t1, t2 to substitute into (9.37)20. 

                                                 
19 This condition can also be written as equality between T-t’ and the duration Dt’(a) valued 
at t’. In fact, the duration is a mean of the times and, denoting by Dt’ and D0 the durations 
calculated in t' and in 0, we obtain: Dt’ = D0 - t’. 
20 If bonds are not ZCB, we consider that each coupon bond is equivalent to a group of ZCB, 
the  face value of which equals the coupons or the redemption value. 
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Exercise 9.3 

Let us use two types of ZCB, called  and :   has redemption values $1,000 
at maturity 6;   has redemption value $500 at maturity 9. Let us calculate the 
numerical shares of  and  to obtain the cover of $98,000 at time 7.25 (=7y+3m) 
if the financial market law is settled by intensity (0.u)=0.06-0.002u. Let us verify 
the immunization by examples. 

A.  According to given data, we obtain:  

 U1 = 1000 ; U2 = 500 ; t1 = 6 ;  t2 = 9 ; T = 7.25 ;  v(0,u) =   e
 0.06 0.002z

0

u
dz

 and 
then v(0,6) = e-0.324  = 0.723250 ; v(0,9) = e-0.459  = 0.631915 ;  v(0,7.25) = e-0.382  

= 0.682197. 

Applying (9.38) we obtain  

1
98000 0.682197 1.75

1000 0.723250 3
 =  53.921726   54 

2
98000 0.682197 1.25

500 0.631915 3
  =  88.164856  88

Let us verify the budget constraint in terms of present values at 0. 

On 1st bond: 53.921716.1000.0.723250 = 38,998.89 

On 2nd bond: 88.164856.500.0.631915  = 27,956.36 
Asset present value  = 66,855.25 

Liability present value 98,000.0.682197 = 66,855.25 

Let us assume that at time 5 a random additive shift occurs with the following 
possible events  

  = +0.01  i.e. +(5,u) = 0.07 - 0.002 u  

  = -0,01  i.e. -(5,u) = 0.05 - 0.002 u 

Thus, the new spot prices at 0 are: 

if   = +0.01: 

v+(0,6) = e
 0.06 0.002z

0

5
dz

e
 0.07 0.002z

5

6
dz

0.759572 0.942707 0.716054  

v+(0,9)  = e
 0.06 0.002z

0

5
dz

e
 0.07 0.002z

5

9
dz

0.759572 0.799315 0.607137  

v+(0,7.25) =  

=

5 7.25

0 5
 0.06 0.002  0.07 0.002

0.759572 0.878150 0.667018;
z dz z dz

e e  
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if  = -0.01: 

v-(0,6) =   e
 0.06 0.002z

0

5
dz

e
 0.05 0.002z

5

6
dz

0.759572 0.961751= 0.730519 

v-(0,9) = e
 0.06 0.002z

0

5
dz

e
 0.05 0.002z

5

9
dz

0.759572 0.865888 0.657704  

v-(0,7.25) = 

= e
 0,06 0,002z

0

5
dz

e
 0,05 0,002z

5

7,25
dz

0.759572 0.918569 0.697719  

Let us verify immunization with respect to given additive shifts: 

if   = +0.01: 

on 1st bond: 53,921716.1000.0,716054 = 38,610.86 

on 2nd bond: 88,164856.500.0,607137  = 26,764.07 
present value of assets  = 65,374.93 

present value of liabilities 98000.0,667018 = 65,367.76 

If   = -0,01: 

on 1st bond: 53,921716.1000.0,730519 = 39,390.84 

on 2nd bond: 88,164856.500.0,657704  = 28,993.19 
present value of assets  = 68,384.03 

present value of liabilities 98,000.0.697719 = 68,376.46 

If both  = +0,01 and  = -0,01: asset present value  liability present value. 

9.3.6. Multiple liability cover   

The immunization problem with regard to single liability cover can be 
generalized into that of multiple liabilities cover, i.e. with reference to many outlays 
(or financial obligations). Then we assumes that the operator must deal to pay many 
debts b (liabilities), spread over time, by means of many receipts due to credits a 
(assets). Such a process is called: Asset-Liability Management (ALM). 

Let us consider an initial balance statement in terms of the present value of assets 
a = (a1,..., an), ah  0, and of liabilities b = (b1,..., bn), bh  0, according to the 
market rate in force at time 0. t = (t1,..., tn) (0<t1< ...<tn ) is the common21 tickler of 
a and b. However, under what conditions does the initial equilibrium not change into 
unfavorable imbalance under a subsequent change of the market rates’ structure?  

                                                 
21 As already seen, this coincidence is not restrictive if we refer to the union of a>0 and b>0 
ticklers.  
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It is evident that an easy solution is obtained using an asset portfolio “devoted” 
to a given liabilities vector, that is: ah =bh , th . In such a case each receipt 
corresponds to an outlay with the same amount and maturity. Then the former 
exactly covers the latter without residual debts or credits. However, such a situation, 
i.e. a sufficient condition of immunization, is quite unusual.  

For situations when equality does not occur between distributions of cash 
inflows and outflows, a rule, with regard to the rate risk of insurance companies 
under flat-yield-curve hypothesis for the market rates, was first given by Redington 
(1952). Bearing in mind Redington’s rule, let us assume a balance statement at 0 
between assets and liabilities, without shift, given by a budget constraint  

 V (0,a;0) ake tk
k 1
n

bke tk
k 1
n

 V (0,b;0)  (9.39) 

where V (0,a; 0)  and V (0,b; 0)  are the values of a and b at 0 without shift and  is 
the intensity in force at time 0. Still denoting by s = (s1,..., sn),  where sh = ah - bh, 
the vector of net flows, (9.39) is equivalent to V (0,s; 0)=0, which means the fairness 
of the whole operation the valued according . If an additive shift occurs, the 
following theorem holds 

Theorem C (Redington). Let us assume that at 0 the constant intensity  and (9.39) 
holds in the market and that an additive shift from  to +Y, with random |Y| 
sufficiently small occurs just after 022. Thus, according to previous definitions about 
a, b, t, a sufficient condition to realize immunization, i.e.   

 V (0,s;Y ) V (0,a;Y ) V (0,b;Y ) 0  (9.40) 

– where the values at 0 are calculated in the hypothesis of shift Y – is that both   

 tkake tk
k 1
n

tkbke tk
k 1
n

 (9.41) 

and 

 tk
2ake tk

k 1
n

 tk
2bke tk

k 1
n  (9.42) 

hold. 

Proof. Equation (9.41) signifies equality between the first derivatives of a and b in 
Y=0, i.e. V ' (0,a; 0) V ' (0,b; 0) . Equation (9.42) signifies inequality between their 
second derivatives in Y=0, i.e. V" (0,a; 0) V" (0,b; 0) . This implies that  

 V ' (0,s;0) 0 ;   V"(0,s;0) 0.  (9.43) 

                                                 
22 This specification, given for the sake of simplicity, is not basic: these results also hold with 
a shift in some time after 0 but  before t1.  
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The truth of the system in (9.43) is, as well known, a sufficient condition in order 

that V (0,s;Y ) ske ( Y )tk
k 1
n

 has a relative minimum into Y=0, so with |Y| 

sufficiently small,  (9.40) holds23.  

Recalling (9.13') and (9.16) and taking into account the budget constraint in 
(9.39), we can observe that (9.41) leads to equality  

 D(a) D(b)   (9.41') 

which is the well known necessary Redington condition for immunization with 
regard to ALM. Moreover, still owing to the budget constraint, (9.42) leads to 
inequality  

 (a) (b)  (9.42') 

Therefore, the immunization condition for multiple liability cover can 
meaningfully be formulated requiring that at time 0 the duration of assets are equal 
to that of liabilities and the convexity of assets are larger than that of liabilities 
(inequality satisfied, of course, in case of single liability cover and in the Fisher-
Weil theorem). 

Under the two hypotheses of budget constraint and equality of durations, the 
inequality condition in (9.42') between asset and liabiliy convexities implies the 
following meaning of immunization: a market rate decrease (a market rate increase) 
leads to an increase (a decrease) of the value of the assets  which is larger (smaller) 
than that of the liabilities. Then in both shift cases we obtain a net margin increase. 

We must still observe that (9.42') implies 

 2(a) 2(b)  (9.42") 

where 2 (a)  and 2 (b)  are the variances of a and b, i.e. the central second 
moments of distributions (t&a) and (t&b). To prove this statement, it is sufficient to 
recall the equalities 2 D2 D(2)  and equation (9.41'). 

Both observations can be generalized to the case of variable rates under a term 
structure and possible additive shifts. In relation to this argument let us now give a 
theorem generalizing the Redington condition under financial law following (x,u) 
intensity.   

                                                 
23 It is evident proof of Theorem C can be obtained by the Taylor expansion up to 2nd order of 

(0, ; )V s Y  with starting point Y=0. 
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Theorem D (generalization of Redington theorem).  Let (0,u) be the intensity  
current at time 0 on the market. Given two cash-flows, the former with assets a = 
(a1,..., an), (ah 0), the latter with liabilities b = (b1,..., bn), (bh 0), both with tickler t 
= (t1,..., tn), 0<t1< ...<tn . Let us assume that a and b are balanced under (0,u), or 
that the budget constraint  

 V (0,a;0) ake
(0,u )du

0

tk

k 1
n

bke
(0,u )du

0

tk

k 1
n

 V (0,b;0)  (9.44) 

holds. In addition, we suppose that (0,u) has at t' just after 024 an additive 

infinitesimal shift Y according to (9.29) with t' = 0+ for simplicity. Then  

 V (t' ,a;Y ) V (t' ,b;Y )  (9.45) 

(equivalent to V (0,a;Y ) V (0,b;Y ) and implying immunization against shift Y) 
holds, if, valuing with the use of (0,u), equality (9.41') between a and b durations at 
0, i.e.     

    tkake
(0,u )du

0

tk

/V (0,a;0)
k 1
n

tkbke
(0,u )du

0

tk

/V (0,b;0)
k 1
n

,

  

 is verified, as well as the inequality  

 D(2)(a) D(2)(b)  (9.46) 

between a and b  2nd order durations in 0, i.e. 

tk
2ake

(0,u )du
0

tk

/V (0,a;0)
k 1
n

tk
2bke

(0,u )du
0

tk

/V (0,a;0)
k 1
n

 

is valid. 

Proof.  With reference to net amounts s = a – b , let us denote by  

D(s) tkske
(0,u )du

0

tk

/V (0,s;0)
k 1
n

 
the s duration in 0. We obtain: 

D(s) D(a) D(b)
Y

V (0,s;Y )
Y 0

.  

In addition, let us denote by  

D(2)(s) t
k
2ske

(0,u )du
0

tk

/V (0,s;0)
k 1
n   

 

                                                 
24 See also footnote 22. 



404     Mathematical Finance  

the  s  2nd  order duration, resulting in:  

D(2)(s) D(2)(a) D(2)(b)
2

Y 2
V (0,s;Y )

Y 0  

 

Let us consider the Taylor expansion of V(0, s; Y), starting by Y=0, up to 1st order 
and using the 2nd order remainder. We obtain, with  included between 0 and Y,  

   V (0,s;Y ) V (0,s;0)
Y

V (0,s;Y )
Y 0

Y
1

2

2

Y 2
V (0,s;Y )

Y

Y 2 (9.47) 

Thus condition (9.41') is equivalent to 
Y

V (0,s;Y )
Y 0

0; moreover, the 

condition in (9.46) is equivalent to 
2

Y 2
V (0,s;Y )

Y

Y 2  > 0 provided that |Y| is 

sufficiently small. Therefore, (9.47) implies the sufficiency of given conditions in 
order that (9.45) holds.          

Owing to the budget constraint and (9.41'), inequality (9.46) is equivalent to 
inequality (9.42") between the central second moments. 

The operative meaning of Theorem D consists of portfolio selection of assets a 
to cover liabilities b, immunized with respect to rate risk related to the chance of 
additive shift. For the stated reasons regarding Theorem B, it is not restrictive, for 
the sake of simplicity to limit ourselves to the case of two assets and two liabilities. 
Let the assets be ZCB having unit value U1 at maturity t1  and U2 at maturity t2 > t1; 
the liabilities are b1 at maturity T1 and  b2 at maturity T2 >T1. We have to calculate 
the shares, i.e. the numbers 1 and 2 of the asset bond in order to satisfy the budget 
constraint and the 1st order condition on the durations that are necessary for 

immunization. Let us agree the unit price v(0,u) = e
(0,z)dz

0
u

 depending on 

intensity (0,u) and then calculate the value V (0,b; 0) bkv(0,Tk )k 1
2 , depending 

on rates at 0, and the duration D(b) Tkbkv(0,Tk )k 1
2 / bkv(0,Tk )k 1

2  of  

liabilities. Then the asset bonds shares are obtained resolving the linear system     
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 (0, ) (0, ) (0, ;0)1 1 1 2 2 2
(0, ) (0, ) ( ) (0, ;0)1 1 1 1 2 2 2 2

U v t U v t V b

t U v t t U v t D b V b
 (9.48) 

which generalizes system (9.37), as well as its solution 

 1
V (0,b;0)(t2 D(b))

U1v(0,t1)(t2 t1)
 , 2

V (0,b;0)(D(b) t1)
U2v(0,t2)(t2 t1)

   25  (9.49) 

generalizes solution (9.38). In particular, b duration takes the place of maturity T of 
the only b in system (9.37). 

In the case of N = N1+N2 asset bonds, it is sufficient to consider two subgroups  
N1 , N2 substituting their durations for t1 and t2.  

Exercise 9.4 

Let us consider a portfolio, having liabilities of 50,000 at time 5 and 40,000 at 
time 7, to cover by shares of two packages of ZCB, the former with U1=1,000 at 
maturity 3, the latter with U2= 800 at maturity 9. We assume that in the market the 
intensity is (0,u)=0,06-0,001u. Let us carry out the immunization and check that it 
is obtained, applying the Theorem D rules with a check of condition (9.46) on 2nd 
order durations. 

 A. According to cash-flow distribution and given intensity, we obtain: 

 discount factor from u to 0:  v(0,u) = e
(0.060

u 0.001z)dz
e (0.06u 0.001u 2 / 2); 

 liability value:   V (0,b; 0) 50000 e 0.2875 40000 e-0.3955 64440.56  ;  

 liability duration:   D(b) 5 50000 e 0.2875 7 40000 e-0.3955 5.8359 . 

The unknowns of the resulting system (9.48) are the real numbers 1 and 2 of 
ZCB shares, which make up the assets. Since 

 t1 = 3     ;     U1 = 1000 ;      v(0, t1) e (0.06 3 0.001 4.5) 0.839037  

 t2 = 9     ;     U2 =   800 ;      v(0, t2) e (0.06 9 0.001 40.5) 0.606834  

the matrix of the coefficients and the constant terms  of system (9.48) is given by 

839.037 485.467 64,440.56

25,17.111 4,369.203 376,068.66
 

                                                 
25 We can observe that: ( 1>0) ( 2>0)  (t1<D(b)<t2). 
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Therefore, owing to (9.49), the shares are 

 
1

64,440.56 (9 5.8359)
839.037 (9 3)

40.50206 ; 2

64, 440.56 (5.8359 3)
485.467 (9 3)

62.73995         

The total par value to obtain for the two assets is: 

par value (1) = 40,502.06   ;  par value (2) = 50,191.96 

With such amounts the budget constraint is verified, because 

 V (0,a; 0) 1U1v(0, t1) 2U2v(0, t2) 40.50206 839.037 62.73995 485.467  

  64440.55 V (0,b; 0)  

The equality between durations is also verified. Thus, 

( ) (40.50206 2517.111 62.73995 4369.203) / 64440.56 5.8359 ( )D a D b  

We must now evaluate the 2nd order durations to verify if the immunization 
sufficient condition is satisfied. We obtain: 

(2) 2 2( ) (3 40.50206 839.037 9 62.73995 485.467) / 64440.56 43.031249 D a
(2) 2 0.2875 2 0.3955( ) (5 50000 7 40000 ) / 64440.56 35.031098 D b e e  

Regarding the central second moments, i.e. the variances, of (t'&a) and (t"&b) 
we obtain:   

2 22 (2) 2 (2)( ) ( ) ( ) 8.973520   ;    ( ) ( ) ( ) 0.973369a D a D a b D b D b  

Therefore, the immunization condition is satisfied. We can verify that the value 
of s is 0 with a relative minimum if the intensity is the given (0,u) = 0.06-0.001u, 
valuing under shift |Y| = 0.005. For the sake of simplicity, we assume that the shift 
occurs in 0+ only after valuation but this hypothesis is not restrictive: the 
conclusions also hold with any shift before 3. Valuing after shift, we obtain: 

(0+,z)=0.06-0.001z    ;   v(0 ,u) e
(0.06 Y0

u 0.001z)dz
  

The statements are: 1 (Y = +0.005) ;  2  (Y = -0.005). 

 if   1 :  v(0 ,u) e
(0.0650

u 0.001z)dz
 e (0.065u 0.001u 2 / 2)  

 if   2 :  v(0 ,u) e
(0.0550

u 0.001z)dz
 e (0.055u 0.001u 2 / 2)  
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The values at 0 under shift in 0+ are: 

 if 1:  

V (0,a; 0.005)  

40.50206 1000 e (0.065 3 0.001 4.5) 62.73995 800 e (0.065 9 0.001 40.5)  

 40502.06 e 0.1905 50191.96 e-0.5445 62594.76;   

V (0,b; 0.005) 50000 e (0.065 5 0.001 12.5) 40000 e (0.065 7 0.001 24.5)  

 50000 e 0.3125 40000 e-0.4305 62588.14;   

V (0, s; 0.005) 62594.76 62588.14 6.62;  

 if 2:  

V (0,a; 0.005)  

 40502.06 e 0.1605 50191.96 e-0.4545 66356.44;   

 V (0,b; 0.005) 50000 e (0.055 5 0.001 12.5) 40000 e (0.055 7 0.001 24.5)  

 50000 e 0.2625 40000 e-0.3605 66349.42;   
V (0, s; 0.005) 66356.44 66349.42 7.02.  

Thus the immunization is checked. Let us verify the different changes of asset 
and liability values depending on a shift, implying immunization:  

 if   1  (  increases):  

(assets)     V (0,a; 0.005) V (0,a;0) 62594.76 64440.56 1845.80 

(liabilities)   V (0,b; 0.005) V (0,b;0) 62588.14 64440.56 1852.42 

The decrease of the value of the assets is less than the decrease of the value of 
the liabilities:  

 if    2  (  decreases):  

(assets)     V (0,a; 0.005) V (0,a;0) 66356.44 64440.56 1915.88 
(liabilities)   V (0,b; 0.005) V (0,b;0) 66349.42 64440.56 1908.86 

The increase in the value of the assets is greater than the increase in the value of 
the liabilities. 

We gave the conditions for semi-deterministic immunization of rate risk in 
several hypotheses, but always with reference to one additive random shift. In the 
case of several additive shifts, we can carry out subsequent immunizations.  
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Shiu (1990) generalized the Redington scheme, not only referring to a non-flat 
rate structure but to non-additive shifts Y(u) with u>0 as well.  With regards to this 
extension, we can prove that to obtain immunization the conditions in (9.45) and 
(9.46) are needed jointly with other inequality constraints.  

However, we do not dwell here on these generalizations and stochastic 
extensions of the immunization, leaving such questions to be discussed in 
specialized papers.    
 


